Исследование оптических свойств тонких пленок сульфида цинка и оксида цинка

Выполнила аспирант ОмГУ: Богданова Елизавета Владимировна

Цель работы:

получение экспериментальных данных об оптических свойствах тонких пленок сульфида цинка и тонких пленок оксида цинка, легированного индием.

Задачи:

1) изготовление тонких пленок сульфида цинка (ZnS) методом термовакуумного испарения и пленок оксида цинка, легированного индием (ZnO(In)), методом реактивного магнетронного распыления;

2) экспериментальное исследование оптических свойств тонких пленок:

• измерение спектров пропускания тонких пленок сульфида цинка и оксида цинка на стеклянных подложках в диапазоне длин волн 0,35-0,9 мкм;

• определение оптической ширины запрещенной зоны пленок сульфида цинка и оксида цинка;

• исследование влияния высокотемпературного отжига на воздухе и в вакууме пленок сульфида цинка (ZnS) и оксида цинка (ZnO(In)) на оптические свойства этих пленок.

Таблица 1 Сводная таблица образцов

ZnS	ZnO(In)		
Образец № 1- ZnS h ₁ = 0,9 мкм отжиг на воздухе при 500°С – 20 мин.	Образец № 1- ZnO(In)	h ₁ = 0,3 мкм без отжига	
	Образец № 2- ZnO(In)	h ₂ = 0,25 мкм без отжига	
Образец № 2- ZnS h ₂ = 0,9 мкм, отжиг в вакууме при 500°С – 20 мин. Образец № 3- ZnS h ₃ = 0,87 мкм, отжиг в вакууме при 500°С – 20 мин.	Образец № 3- ZnO(In)	h ₃ = 0,2 мкм без отжига	
	Образец № 4- ZnO(In)	h ₄ = 0,756 мкм отжиг на воздухе при 500°C – 20 мин.	
	Образец № 5- ZnO(In)	h ₅ = 0,75 мкм отжиг в вакууме при 500°C – 20 мин.	
	Образец № 6- ZnO(In)	h ₆ = 0,375 мкм отжиг в вакууме при 500°C – 20 мин.	
	Образец № 7- ZnO(In)	h ₇ = 0,375 мкм отжиг на воздухе при 500°C – 20 мин.	

Определение оптической ширины запрещенной зоны

Коэффициент отражения:

$$R_1 = \left(\frac{n_1 - 1}{n_1 + 1}\right)^2 \qquad R_{12} = \left(\frac{n_{12} - 1}{n_{12} + 1}\right)^2 \qquad R_2 = \left(\frac{n_2 - 1}{n_2 + 1}\right)^2$$

Коэффициент поглощения:

$$\alpha = \frac{1}{h} \ln \left[\frac{\langle -R_1 \rangle - R_{12} \rangle - R_2}{T} \right]$$

Результаты:

Рис. 1. Спектр пропускания образца \mathbb{N} 1-ZnS, $h_1 = 0,3$ мкм, до проведения отжига.

Рис. 2. Зависимость квадрата коэффициента поглощения образца № 1-ZnS от энергии кванта.

Оптическая ширина запрещенной зоны до проведения отжига: $Eg = 3,25 \ \Im B$.

Рис. 3. Спектр пропускания образца № 1-ZnS, после проведения отжига на воздухе при температуре 500°С 20 минут.

Рис. 4. Зависимость квадрата коэффициента поглощения образца № 1- ZnS от энергии кванта.

Оптическая ширина запрещенной зоны после отжига: Eg = 3,31 эВ Разница (до и после отжига) Δ Eg = 0,06 эВ

Рис. 5. Сравнение спектров пропускания образца № 1- ZnS:

—О— до отжига

— – после отжига

Рис. 6. Спектр пропускания образца № 2-ZnS, перед проведением отжига.

Рис. 7. Зависимость квадрата коэффициента поглощения образца № 2-ZnS от энергии кванта.

Оптическая ширина запрещенной зоны до проведения отжига: $Eg = 3,26 \ \Im B$

Рис. 8. Спектр пропускания образца № 2-ZnS, после проведения отжига в вакууме при температуре 500°С 20 минут.

Рис. 9. Зависимость квадрата коэффициента поглощения образца № 2-ZnS от энергии кванта.

Оптическая ширина запрещенной зоны после отжига: Eg = 3,33 эB Разница (до и после отжига) $\Delta = 0,07$ эB

Рис. 10. Сравнение спектров пропускания образца № 2- ZnS:

Таблица 2

Сравнение ширины запрещенной зоны до и после проведения отжига пленок ZnS

	Eg до отжига, эВ	Eg после отжига, эВ	Δ, эВ
Образец № 1- ZnS	3,25	3,31	0,06
Образец № 2- ZnS	3,26	3,33	0,07
Образец № 3- ZnS	3,23	3,3	0,07

Обсуждение

В результате исследований было выяснено, что при отжиге плёнок сульфида цинка на воздухе и в вакууме, оптическая ширина запрещенной зоны пленок увеличивается на 0,06 – 0,07 эВ.

Показатель	ZnS			
Сингония	Кубическая	Гексагональная		
Ширина запрещенной зоны, эВ	3,7	3,8		

Рис. 11. Спектр пропускания образца № 4-ZnO(In), $h_4 = 0,756$ мкм, до проведения отжига.

Рис. 12. Зависимость квадрата коэффициента поглощения образца № 4-ZnO(In) от энергии кванта.

Оптическая ширина запрещенной зоны до проведения отжига: $Eg = 3,22 \ 3B.$

Рис. 13. Спектр пропускания образца № 4-ZnO(In), после проведения отжига на воздухе при температуре 500°С 20 минут.

Рис. 14. Зависимость квадрата коэффициента поглощения образца № 4-ZnO(In) от энергии кванта.

Оптическая ширина запрещенной зоны после отжига: Eg = 3,1 эВ Разница (до и после отжига) $\Delta = 0,12$ эВ

Рис. 15. Сравнение спектров пропускания образца № 4-ZnO(In):

—○— – до отжига
—● – после отжига

Рис. 16. Спектр пропускания образца № 5-ZnO(In), $h_5 = 0,75$ мкм, до проведения отжига.

Рис. 17. Зависимость квадрата коэффициента поглощения образца № 5-ZnO(In) от энергии кванта.

Оптическая ширина запрещенной зоны до проведения отжига: Eg = 3,2 эB.

Рис. 18. Спектр пропускания образца № 5-ZnO(In) после проведения отжига в вакууме при температуре 500°С 20 минут.

Рис. 19. Зависимость квадрата коэффициента поглощения образца № 5-ZnO(In) от энергии кванта.

Оптическая ширина запрещенной зоны после отжига: Eg = 3,09 эВ Разница (до и после отжига) $\Delta = 0,11$ эВ

Рис. 20. Сравнение спектров пропускания образца № 5-ZnO(In):

—О— – до отжига

— – после отжига

Рис. 21. Спектр пропускания образца № 6-ZnO(In), $h_6 = 0,375$ мкм, до проведения отжига.

Рис. 22. Зависимость квадрата коэффициента поглощения образца № 6-ZnO(In) от энергии кванта.

Оптическая ширина запрещенной зоны до проведения отжига:

 $Eg = 3,21 \Im B.$

Рис. 23. Спектр пропускания образца № 6-ZnO(In) после проведения отжига в вакууме при температуре 500°С 20 минут.

Рис. 24. Зависимость квадрата коэффициента поглощения образца № 6-ZnO(In) от энергии кванта.

Оптическая ширина запрещенной зоны после отжига: Eg = 3,12 эB Разница (до и после отжига) $\Delta = 0,09$ эB

Рис. 25. Сравнение спектров пропускания образца № 6-ZnO(In):

—О— – до отжига

— — после отжига

Таблица 3

Сравнение ширины запрещенной зоны до и после проведения отжига пленок ZnO(In)

	Eg до отжига, эВ	Eg после отжига, эВ	Δ, эΒ
Образец № 1- ZnO(In)	3,22	не отжигался	
Образец № 2- ZnO(In)	3,22	не отжигался	
Образец № 3- ZnO(In)	3,22	не отжигался	
Образец № 4- ZnO(In)	3,22	3,1	0,12
Образец № 5- ZnO(In)	3,2	3,09	0,11
Образец № 6- ZnO(In)	3,21	3,12	0,09
Образец № 7- ZnO(In)	3,22	3,1	0,12

Обсуждение

В результате исследований было выяснено, что при отжиге плёнок оксида цинка, легированного индием в воздухе и в вакууме, оптическая ширина запрещенной зоны пленок уменьшается на ~ 0,1 эВ.

Заключение

В данной работе:

- 1) сделан литературный обзор, посвященный исследованию оптических свойств тонких пленок ZnS и ZnO;
- 2) представлены: техника изготовления тонких пленок ZnS и ZnO, методика изготовления экспериментальных образцов и методика исследования оптических свойств изготовленных пленок, а также полученные результаты исследований и их обсуждение.
- 3) изготовлены тонкие пленки ZnS с различными толщинами на стеклянных подложках методом термовакуумного испарения; изготовлены тонкие пленки ZnO(In) с различными толщинами на стеклянных подложках методом реактивного магнетронного распыления;
- 4) исследованы оптические свойства тонких пленок сульфида цинка ZnS и пленок оксида цинка, легированного индием ZnO(In)):
- измерены спектры пропускания тонких пленок диапазоне длин волн 0,35-0,9 мкм;
- определена оптическая ширина запрещенной зоны пленок;
- исследовано влияние высокотемпературного отжига в воздухе и вакууме пленок сульфида цинка (ZnS) и оксида цинка, легированного индием, (ZnO(In)) на оптические свойства этих пленок.

Спасибо за внимание!